PROJECT IN 62583

Toilet rain water system

05.12.2021

Group 3:

Kim R. H. Christensen Jorgen D. Greve
5181554 s181519

DTU - ELEKTRO

62583 - Programming of embedded wireless systems and sensors

DTU

I

CONTENTS

Contents

1 Introduction
1.1 Problem definition
1.2 UN Goals e

2 Design
2.1 System flow chart o
2.2 Protocols
2.3 ZigBee protocol Lo
2.4 ESP32 protocol
2.5 Energy consumptiono

3 Implementation
3.1 Casediagramo

4 Test e
4.1 MQTT publish
4.2 System test
4.3 Emergy consumptiono L Lo

5 Conclusion e

A Appendix e e
Al main.ccode

=~ w W

SIS L G, SN

[e23=>]

© 0w o

62583 - Programming of embedded wireless systems and sensors

Page 2 of 17

=
—
=

i

1 INTRODUCTION

1 Introduction

With the increased focus on maximizing the effort to preserve the earths resources there are a rise in making technology
that enables users to do that. That could be street lights dimming down when there are no traffic or pedestrians or
Smart Homes where automation takes care of for example controlling the heating of a house or turn off home appliances
when there are no persons present in the room.

1.1 Problem definition

The problem for this project was to enable households to use rain water for the toilets instead of using mains. Though
the underground water resources in Denmark are plentiful, there is still a limit to the amount of water that can
be extracted in order to keep the environmental balance at a state where the underground water could be refilled
naturally. Here our solution will enable households to reduce the usage of the mains water for sanitary purposes and
instead make use of the water collected from precipitation, which in the future is predicted to increase due to climate
changes.

CoorJ :vmlu 's

Figure 1: System overview

In figure 1 a schematic of the system is shown. A ZigBee S2C End Device should be responsible keeping track of the
amount of water in the water reservoir as well as managing which water source that should be active, hence the water
source should change to mains when the water reservoir is at a certain water level. All this is controlled by a ESP-32
that will communicate with the End Device via a ZigBee S2C Coordinator and upload the water level in the water
reservoir and current water source to the internet.

In order to make the, above mentioned, data accessible the MQTT protocol should be used, here the ESP-32 will be
used as the publisher. This decision was made in order to minimize the components necessary for the project as well
as reducing the overall power consumption.

For the project two LEDs should simulate the two solenoid valves and a potentiometer should be used to simulate the
water level in the water reservoir.

62583 - Programming of embedded wireless systems and sensors Page 3 of 17

=
—
=

i

2 DESIGN

1.2 UN Goals

When choosing the topic for this project, the United Nations Sustainable Development Goals where consulted in order
to create a product that would help reaching one or more of those.

Here the following two goals seemed to fit perfect with our idea for the project.

Goal 6, Clean water and sanitation

By utilizing rain water to flush the toilet instead of clean drinking water this project is helping to ensure that we do not
waste precious drinking water and thereby contributing to UN goal 6 which is to ”ensure availability and sustainable
management of water and sanitation for all”

Furthermore it reduces the need for descaler because of the lack of calcium in rain water and thereby reducing the
discharge of harmfull substances into the waste water.

Goal 12, Responsible consumption and production

By reducing the consumption of clean drinking water together with the reduction in the production of descaling prod-
ucts this project contributes towards UN goal 12 which is to ” Ensure sustainable consumption and production patterns”

2 Design

2.1 System flow chart

Get rain water tank
level

Is the rain water
tank level below
limit?

Ve Turn rain solenoid Turn mains solenoid
valve OFF valve ON

Mo

Is the rain water
tank level above
limit?

Ve Turn mains solenoid Turn rain solenoid v
valve OFF valve ON

No

Transmit rain water
tank level and
solenoid siatus to
cloud

Y

Figure 2: System flowchart

The system should read the water level in the rain water tank and then from some water level parameters decide if
it should use water from the rain water tank or the water mains by turning solenoid valves on or off. It should also
transmit the current rain water tank level and the solenoid valve status to a cloud server where it can be viewed by a
user.

The rain water tank limit should be set so that it is not possible to run out of rain water before next water level check.

62583 - Programming of embedded wireless systems and sensors Page 4 of 17

=
—
=

i

2 DESIGN

2.2 Protocols

Describe and document the different protocols used in communication for sensors to the esp, and esp communication
protocol to gateway and to the cloud.

2.3 ZigBee protocol

The ZigBee protocol is build on top of the IEEE 802.15.4 protocol and consists of a Network Layer and Application
Layer as seen in the figure 3 below.

Application Layer (APL)

Application ZigBee ZigBee
Framework Device Object IEEE 802.15.4

Application Support Sublayer

Network Layer (NWK)
Medium Access Control (MAC)
Physical Layer (PHY)

Figure 3: ZigBee Protocol

The Physical layer are responsible for the radio transmission configurations, like the output power and managing
the channels. The Medium Control layer is responsible the communication between two devices and handles the
data packets, it is not able to direct data to other devices than the closest one in the network. The Network Layer is
responsible for security, and network structure. And the Application Layer handles the different profiles in the network,
keeps track of which device the ZigBee which to communicate with and set the role in the network (Coordinator, Router
or End Device).

2.4 ESP32 protocol

The ESP32 uses the TCP protocol to communicate data to Thingspeak. TCP works by first establishing a connection
between the client and the server, then packets of data can be send and then either the server or the client closes the
connection. If a data packet of data is lost it can be detected and the packet can be resend.

https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Reference/r_zb_stack.htm?TocPath=z]

s. 40 i Xbee manualen

2.5 Energy consumption

The system should be designed to be as energy efficient as possible so that it does not contribute unnecessarily to
pollution by burning fossile fuels to create energy. The system is built into a building where mains power is at hand.
Therefore battery operation is unnecessary and due to the operation of solenoid valves which consume a considerable
amount of electrical energy it would require a rater large battery.

62583 - Programming of embedded wireless systems and sensors Page 5 of 17

=
—
=

i

4 TEST

3 Implementation

3.1 Case diagram

The ESP32 module is running FreeRTOS with two tasks.

Task 1 - Data communication Task 2 - MQTT publish

l)

- idle
RX data = (delay)
Update system Publish
state tank percentage
TX data] Fublish

system state

Figure 4: ESP32 case diagram

Task 1 is responsible for handling data communication. First it checks if any new data is available in the UART
receive buffer. If there is new data and it comes from the XBee end-device, the rain water tank percentage and the
system state is updated. The system state is a variable that is either 1 or 0 where 0 indicates that the system is using
water mains as supply and 1 indicates that it uses rain water. After the system update, the ESP32 transmits data to
the XBee end-device which then changes the solenoid valves accordingly.

Task 2 is responsible for publishing system information to Thingspeak.com. More specifically it publishes the current
water level as a percentage and if it is using water from mains or rain water.

4 Test
4.1 MQTT publish

In this test we tested if the system could publish to Thingspeak. To simulate changing water level in the rain water
tank we connected a signal generator to the ADC input on the XBee end-device. The signal generator was set up
to output a sine wave with a period of 10 min and an amplitude of 1.2V which is the maximum the XBee ADC can
measure.

On the below figure we can see that the sine curve in Field 1 is a bit angular, it should have been much more smooth.
The data in Field 2 shows that we use rain water to begin with and then when the water level drops below the limit
we switch to mains until the water is above the limit again. The MQTT publish task was at the time set to publish
every 10 seconds but if we look at both graphs its easy to see that its somewhat irregular.

62583 - Programming of embedded wireless systems and sensors Page 6 of 17

=
—
=

i

4 TEST

Field 1 Chart £ A

Rain water tank percentage
100

Percent
(%2l
(=]

0
07:35 07:40 07:45
Date
ThingSpeak.com

Field 2 Chart g o & =

A Water source

Tl eee— oo = oo o
E

]

o

c

©

I 0.5

@

=

=]

Q

w

s 0 e

- 07-40 07'45
= Date

ThingSpeak.com

Figure 5: Thingspeak MQTT publish

We have had some difficulties concerning MQTT that we have not been able to solve before our deadline as can be
viewed on the below figure. Given some more time we would of course have found a solution for that.

62583 - Programming of embedded wireless systems and sensors Page 7 of 17

=
—
=

i

4 TEST

I (1592) wifi:AP's beacon interval = 102400 us, DTIM period = 1

Tank level is 99 percent

Using rain...

Tank level is 98 percent

Using rain...

Tank level is 97 percent

Using rain...

Figure 6: MQTT errors from the Visual Studio terminal

4.2 System test

Because we did not have any water level sensor or solenoid valves these were simulated. The water level sensor was
replaced with a potentiometer or a signal generator both capable of delivering a variable voltage between 0V to 1.2V.
The solenoid valves were simulated with LED’s (LED on => solenoid open). The green LED simulated the rain water
tank solenoid valve and the red simulated the water mains solenoid valve. Except from the MQTT the whole system
ran as expected. With 0V on the ADC of the XBee end-device the system chose to use water from the mains. When
the voltage hit the defined limit, the system switched to use rain water as source until the voltage dropped below the
limit again.

Figure 7: Rain water solenoid on

62583 - Programming of embedded wireless systems and sensors Page 8 of 17

=
—
=

i

A APPENDIX

0
ROO000L

Wodw. “'wds

1noxes.
aaov

i o0

Figure 8: Water mains solenoid on

4.3 Energy consumption

Due to the fact that our system is powered from the mains we have not gone into more detail with power measurements
but we do have some measurements. The XBee end-device consumes around 12 mAh but that is without the real
solenoid valves which consumes a lot more. The XBee coordinator consumes about 27 mAh and according to our
research the ESP32 module consumes around 160 - 260 mAh when it is active.

5 Conclusion

Despite the challenges with MQTT we all in all think that we succeeded in creating a system (or at least a proof of
concept) that can handle the electrical part of a rain water toilet flush system. There are of course many other things
to consider if the system should be implemented in real life.

A Appendix

A.1 main.c code

#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "esp_wifi.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "esp_event_loop.h"

#include "freertos/FreeRT0S.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/event_groups.h"

#include "lwip/sockets.h"
#include "lwip/dns.h"
#include "lwip/netdb.h"

62583 - Programming of embedded wireless systems and sensors Page 9 of 17

=
—
=

i

A APPENDIX

#include "esp_log.h"
#include "mqtt_client.h"

#define SECOND (1000 / portTICK_PERIOD_MS)

/////////// UART [////////////////////
#include "driver/uart.h"
#include "soc/uart_struct.h"

static const int RX_BUF_SIZE = 1024;

#define TXD_PIN (GPIO_NUM_4)
#define RXD_PIN (GPIO_NUM_5)

/////////// XBEE API COMMANDS ////////

char solenoid_rain_on[] = {0x7E,0x00,0x10,0x17,0x01,0x00,0x13,0xA2,0x00,0x41,0xB5,0xFE,0xA0, OxFF,
0xFE, 0x02,0x44,0x34,0x05,0x22};

char solenoid_rain_off[] = {0x7E,0x00,0x10,0x17,0x01,0x00,0x13,0xA2,0x00,0x41,0xB5,0xFE,0xA0, OxFF,

0xFE, 0x02,0x44,0x34,0x04,0x23};

{0x7E, 0x00,0x10,0x17,0x01,0x00,0x13,0xA2,0x00,0x41,0xB5,0xFE, 0xA0Q, OxFF,

0xFE, 0x02,0x44,0x33,0x05,0x23};

char solenoid_mains_off[] = {0x7E,0x00,0x10,0x17,0x01,0x00,0x13,0xA2,0x00,0x41,0xB5,0xFE,0xA0, OxFF,
0xFE, 0x02,0x44,0x33,0x04,0x24};

char solenoid_mains_onl[]

/////////// RAIN TANK STATUS ////////
int system_state = 0;

[I117777717777777777777771177717777777
static const char *TAG = "MQTT_EXAMPLE";
static EventGroupHandle_t wifi_event_group;
static EventGroupHandle_t mqtt_event_group;
const static int CONNECTED_BIT = BITO;

SemaphoreHandle_t print_mux = NULL;

char tank_perc_pub[46] = {0};
char sys_state_pub[46] = {0};

int change = 0;
uintl6_t tank_percent = 0O;

esp_mqtt_client_handle_t client;

[11177777777/7/7//77///7//////////// MQTT EVENT HANDLER ////////////////////////////////////
static esp_err_t mqtt_event_handler (esp_mqtt_event_handle_t event)
{

esp_mqtt_client_handle_t client = event->client;

int msg_id;

switch (event->event_id)

{
case MQTT_EVENT_CONNECTED:

62583 - Programming of embedded wireless systems and sensors Page 10 of 17

=
—
=

i

A APPENDIX

ESP_LOGI(TAG, "MQTT_EVENT_CONNECTED");

xEventGroupSetBits (mqtt_event_group, CONNECTED_BIT);

/*

msg_id = esp_mqtt_client_publish(client, "/topic/qosl", "data_3", 0, 1, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=)d", msg_id);

msg_id = esp_mqtt_client_subscribe(client, "/topic/qosO", 0);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=%d", msg_id);

msg_id = esp_mqtt_client_subscribe(client, "/topic/qosl", 1);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=/d", msg_id);

msg_id = esp_mqtt_client_unsubscribe(client, "/topic/qosl");

ESP_LOGI(TAG, "sent unsubscribe successful, msg_id=}d", msg_id);

*/

msg_id = esp_mqtt_client_subscribe(client, "channels/1572371/subscribe", 0);
ESP_LOGI(TAG, "sent subscribe successful, msg_id=d", msg_id);

break;

case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT_EVENT_DISCONNECTED");
break;

case MQTT_EVENT_SUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_SUBSCRIBED, msg_id=%d", event->msg_id);
msg_id = esp_mqtt_client_publish(client, "/topic/qosO", "data", 0, 0, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=/d", msg_id);
break;

case MQTT_EVENT_UNSUBSCRIBED:
ESP_LOGI(TAG, "MQTT_EVENT_UNSUBSCRIBED, msg_id=/d", event->msg_id);
break;

case MQTT_EVENT_PUBLISHED:
ESP_LOGI(TAG, "MQTT_EVENT_PUBLISHED, msg_id=%d", event->msg_id) ;
break;

case MQTT_EVENT_DATA:
ESP_LOGI(TAG, "MQTT_EVENT_DATA");
printf ("TOPIC=Y%.*s\r\n", event->topic_len, event->topic);
printf ("DATA=Y.*s\r\n", event->data_len, event->data);
break;

case MQTT_EVENT_ERROR:
ESP_LOGI(TAG, "MQTT_EVENT_ERROR");
break;

default:
ESP_LOGI(TAG, "Other event id:%d", event->event_id);
break;

}
return ESP_0OK;

117177777777/7///777///7//////////// WIFL EVENT HANDLER ////////////////////////////////////
static esp_err_t wifi_event_handler(void *ctx, system_event_t *event)
{
switch (event->event_id) {
case SYSTEM_EVENT_STA_START:

62583 - Programming of embedded wireless systems and sensors Page 11 of 17

=
—
=

i

A APPENDIX

esp_wifi_connect();
break;

case SYSTEM_EVENT_STA_GOT_IP:
xEventGroupSetBits(wifi_event_group, CONNECTED_BIT);

break;
case SYSTEM_EVENT_STA_DISCONNECTED:
esp_wifi_connect();
xEventGroupClearBits (wifi_event_group, CONNECTED_BIT);
break;
default:
break;
}
return ESP_0OK;

11117717771777777777/77/77/77//7///// WIFL INITIALIZE /////////////7///7/7///7///7/7//17//7/7///7/7/

static void wifi_init(void)

{
tcpip_adapter_init();
wifi_event_group = xEventGroupCreate() ;
ESP_ERROR_CHECK (esp_event_loop_init(wifi_event_handler, NULL));
wifi_init_config t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK (esp_wifi_init(&cfg));
ESP_ERROR_CHECK (esp_wifi_set_storage (WIFI_STORAGE_RAM));
wifi_config t wifi_config = {
.sta = {
.ssid = CONFIG_WIFI_SSID,
.password = CONFIG_WIFI_PASSWORD,
},
I
ESP_ERROR_CHECK (esp_wifi_set_mode (WIFI_MODE_STA));
ESP_ERROR_CHECK (esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
ESP_LOGI(TAG, "start the WIFI SSID:[%s]", CONFIG_WIFI_SSID);
ESP_ERROR_CHECK (esp_wifi_start());
ESP_LOGI(TAG, "Waiting for wifi");
xEventGroupWaitBits(wifi_event_group, CONNECTED_BIT, false, true, portMAX_DELAY);
}

/1111111117177717777//7///7/7/7/7/7/7/7/// VQTT APP START ///////////////////////////1/111/1/1//1//
static void mqtt_app_start(void)
{
mqtt_event_group = xEventGroupCreate() ;
esp_mgqtt_client_config_t mqtt_cfg = {
.uri = CONFIG_BROKER_URL,
.port=1883,
.client_id="EB8QAhQ1HDYdMTQLByETGBY",
.username="EB8QAhQ1HDYdMTQLByETGBY",
.password="pLPZfUVoOwIUi2TVUOYNhrfu",
.event_handle = mqtt_event_handler

};

#if CONFIG_BROKER_URL_FROM_STDIN

62583 - Programming of embedded wireless systems and sensors Page 12 of 17

=
—
=

i

A APPENDIX

char 1line[128];

if (stremp(mgtt_cfg.uri, "FROM_STDIN") == 0) {
int count = 0;
printf ("Please enter url of mqtt broker\n");
while (count < 128) {
int ¢ = fgetc(stdin);
if (c == ’\n’) {

line[count] = ’\0’;
break;
} else if (¢ > 0 && c < 127) {
line[count] = c;
++count;

¥

vTaskDelay (10 / portTICK_PERIOD_MS) ;
}
mgtt_cfg.uri = line;
printf ("Broker url: %s\n", line);

} else {
ESP_LOGE(TAG, "Configuration mismatch: wrong broker url");
abort();

}

#endif /* CONFIG_BROKER_URL_FROM_STDIN */

client = esp_mqtt_client_init(&mqtt_cfg);
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);
esp_mqtt_client_start(client);

[171777777777777777//77////7//7///// INITIALIZE UART ///////////////////////7////7///7////7/
void uart_init() {
const uart_config_t uart_config = {
.baud_rate = 9600,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE
I
uart_param_config(UART_NUM_1, &uart_config);
uart_set_pin(UART_NUM_1, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE) ;
// We won’t use a buffer for sending data.
uart_driver_install (UART_NUM_1, RX_BUF_SIZE * 2, 0, 0, NULL, 0);

111777777777777777777/77/7//7////// SEND DATA //////////77/77//777777/7//7//77////77/71///7/7///

int sendData(const char* logName, const char* data)

{
const int len = strlen(data);
const int txBytes = uart_write_bytes(UART_NUM_1, data, len);
ESP_LOGI(logName, "Wrote %d bytes", txBytes);
return txBytes;
}

62583 - Programming of embedded wireless systems and sensors Page 13 of 17

=
—
=

i

A APPENDIX

///77/1/117/77/77/7/////7//7/////////// TASK DATA COMMS ///////////////////////////////////////
static void data_comms(void *pvParameters)
{

static const char *RX_TASK_TAG = "RX_TASK";

esp_log_level_set(RX_TASK_TAG, ESP_LOG_INFO) ;

uint8_t* data = (uint8_t*) malloc(RX_BUF_SIZE+1);

uintl6_t tank_level = 0;

uintl6_t tank_level_hi 0;
uint16_t tank_level_lo = O;
while(1)

{

xSemaphoreTake (print_mux, portMAX_DELAY);

/1171777777777/77/77777/7//////7 RX DATA /////////7/77777/7/7/77777/7/7/7777777///7/77777/7/7/7/7/7/7/
const int rxBytes = uart_read_bytes(UART_NUM_1, data, RX_BUF_SIZE, 1000 / portTICK_RATE_MS);

if (rxBytes > 0)
{
data[rxBytes] = 0;

ESP_LOG_BUFFER_HEXDUMP (RX_TASK_TAG, data, rxBytes, ESP_LOG_INFQO);
if (datal[4] == 0x00 && data[5] == 0x13 && datal[6] == 0xA2 && datal[7] == 0x00 && datal8]

== 0x41 && data[9] == 0xB5 && data[10] == OxFE && data[11] == 0xAO0)
{

tank_level_hi data[21] << 8;
tank_level_lo datal[22];
tank_level = tank_level_hi + tank_level_lo;

tank_percent = 0.0978 * tank_level;
printf("Tank level is %i percent \n",tank_percent);

sprintf (tank_perc_pub, "fieldl=Y%u&status=MQTTPUBLISH", tank_percent);
sprintf (sys_state_pub, "field2=Yu&status=MQTTPUBLISH", system_state);

if (tank_percent > 100)

{

tank_percent = 100;
}
if (tank_percent < 16)
{

tank_percent = 0;
}

if (tank_percent < 10)

{
system_state = 0;
}
if (tank_percent >= 10)
{

62583 - Programming of embedded wireless systems and sensors Page 14 of 17

=
—
=

i

A APPENDIX

system_state = 1;
X

change = 1;

3

xSemaphoreGive (print_mux) ;

[11777777777777/77777777/7/7// TX DATA //////////7//7/7/777/7777/7/7/7/777/7////7/7/7///
if (change == 1)

{

switch (system_state)

{

case 0: // Rain tank empty
uvart_write_bytes(UART_NUM_1, solenoid_rain_off, sizeof (solenoid_rain_off));
vTaskDelay (500 / portTICK_PERIOD_MS);
uart_write_bytes(UART_NUM_1, solenoid_mains_on, sizeof(solenoid_mains_on));
printf ("Using mains... \n");
change = 0;
break;

case 1: // There is water in the rain tank
uart_write_bytes(UART_NUM_1, solenoid_mains_off, sizeof(solenoid_mains_off));
vTaskDelay (500 / portTICK_PERIOD_MS);
uvart_write_bytes(UART_NUM_1, solenoid_rain_on, sizeof(solenoid_rain_on));
printf ("Using rain... \n");
change = 0;
break;

default:
break;

}

change = 0;

}
}
vTaskDelete (NULL) ;

[177117/77777/7/7/7/77/7//7//7//7/////// TASK MQTT PUBLISH /////////////////////////////////////
static void mqtt_publish(void *pvParameters)
{

static int msg_id = 0O;
portTickType xLastWakeTime;
xLastWakeTime = xTaskGetTickCount();

// MQTT INIT
esp_mqtt_client_config t mqtt_cfg = {

62583 - Programming of embedded wireless systems and sensors Page 15 of 17

=
—
=

i

A APPENDIX

.uri = CONFIG_BROKER_URL,

.port=1883,
.client_id="EB8QAhQ1HDYdMTQLByETGBY",
.username="EBS8QAhQ1HDYdMTQLByETGBY" ,
.password="pLPZfUVoOwIUi2TVUOYNhrfu",
.event_handle = mqtt_event_handler

s

while(1)

{
xSemaphoreTake (print_mux, portMAX_DELAY);
xEventGroupClearBits(mqtt_event_group, CONNECTED_BIT);
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);
esp_mqtt_client_start(client);
xEventGroupWaitBits(mqtt_event_group, CONNECTED_BIT, false, true, portMAX_DELAY);
msg_id = esp_mqtt_client_publish(client, "channels/1572371/publish", tank_perc_pub, O,
0, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=/d", msg_id);
msg_id = esp_mqtt_client_publish(client, "channels/1572371/publish", sys_state_pub, O,
0, 0);
ESP_LOGI(TAG, "sent publish successful, msg_id=%d", msg_id);
esp_mqtt_client_stop(client);
xSemaphoreGive (print_mux) ;
// 10 s between every run
vTaskDelayUntil(&xLastWakeTime, (10000 / portTICK_RATE_MS));

}

vTaskDelete (NULL) ;

LI1777777777777777777777777777777 MAIN [//7///7777777777777777777777/777/7777/77777777/7/77/7
void app_main()
{

print_mux = xSemaphoreCreateMutex() ;

ESP_LOGI(TAG, "[APP] Startup..");
ESP_LOGI(TAG, "[APP] Free memory: %d bytes", esp_get_free_heap_size());
ESP_LOGI(TAG, "[APP] IDF version: %s", esp_get_idf_version());

esp_log_level_set("x", ESP_LOG_INFO);
esp_log_level_set ("MQTT_CLIENT", ESP_LOG_VERBOSE);
esp_log_level_set ("MQTT_EXAMPLE", ESP_LOG_VERBOSE);
esp_log_level_set ("TRANSPORT_TCP", ESP_LOG_VERBOSE) ;
esp_log_level_set ("TRANSPORT_SSL", ESP_LOG_VERBOSE) ;
esp_log_level_set ("TRANSPORT", ESP_LOG_VERBOSE);

62583 - Programming of embedded wireless systems and sensors Page 16 of 17

=
—
=

i

A APPENDIX

esp_log_level_set ("OUTBOX", ESP_LOG_VERBOSE) ;
ESP_ERROR_CHECK (esp_event_loop_create_default());

uart_init();

nvs_flash_init();

wifi_initQ;

mqtt_app_start();

// xTaskCreate(pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask)

xTaskCreate(data_comms, "Data communication", 4048, (void *)0, 3, NULL) ;
xTaskCreate(mqtt_publish, "MQTT Publish", 4048, (void *)0, 2, NULL) ;

62583 - Programming of embedded wireless systems and sensors Page 17 of 17

	Introduction
	Problem definition
	UN Goals

	Design
	System flow chart
	Protocols
	ZigBee protocol
	ESP32 protocol
	Energy consumption

	Implementation
	Case diagram

	Test
	MQTT publish
	System test
	Energy consumption

	Conclusion
	Appendix
	main.c code

