PROJECT IN
DIGITAL INSTRUMENTATION

GROUP 3
23.12.2021
Authors:
.
Kim R. H. Christensen Jorgen D. Greve
s181554 s181519

DTU - ELEKTRO
30021 - Digital Instrumentation

ELU

o
o

>
CONTENTS ““
Contents
1 Problem definition 3
2 Design e 3
2.1 Step MOtOr . . . L e 3
2.2 LSMOIDSI . . . 4
2.3 HOC-SRO4 . . . o 4
2.4 Fan . . . o s 4
3 Implementation e 4
3.1 Flow chart 5
3.2 System overviewol e e e e 6
3.3 Window handle e 6
3.4 Thermometer s 8
3.5 Distance Sensor e e e 8
4 Test . . . e e e e e 8
5 System demonstration 9
6 Conclusion s 9
A Appendix 10
Al main.ccode e 10

30021 - Digital Instrumentation Page 2 of 22

=
—
=

i

2 DESIGN

1 Problem definition

The problem we would like to solve in this project is to control the indoor climate in a greenhouse by making an
automated ventilation system. This should be achieved by using the components used in the course, here the HC-
SR04, LSM9DS1 and step motor will be the key components.

2 Design

To utilize some of the components we have worked with in the course we decided to use the stepper motor for window
manipulation, the LSM9DS1 to get temperature readings, the HC-SR04 to detect if the window is open and how much
and the fan for accelerating the cooling of the green house. All the components would then be tied together with the
brain of the system, the ST NUCLEO prototyping board featuring an ARM STM32 microcontroller.

The system should measure the green house temperature and based on that open or close the window. If opening the
window is not sufficient, then the fan should kick in and help with getting fresh outside air into, and warm air out of,
the green house.

2.1 Step motor

The step motor is driven of electrical coils that have to be controlled by a micro controller that will send a certain
amount of impulses to the electrical coils in order to get the motor turning a series of steps. The step motor issued
for this course were an unipolar step motor which means that it was not necessary to consider alternating currents as
the bipolar step motor needs.

In order to drive the step motor two control methods were considered, the full drive and the half drive. As seen in the
tables below the order of pulses for each of the drive types are shown:

Full drive
Step | Coil 1 | Coil 2 | Coil 3 | Coil 4
1 1 1 0 0
2 0 1 1 0
3 0 0 1 1
4 1 0 0 1

For full drive mode two coils are activated at a time and by that the torque is the greatest, however the power
consumption will be higher when using this mode.

Half drive
Step | Coil 1 | Coil 2 | Coil 3 | Coil 4
1 1 0 0 0
2 1 1 0 0
3 0 1 0 0
4 0 1 1 0
5 0 0 1 0
6 0 0 1 1
7 0 0 0 1
8 1 0 0 1

For half drive, the coils are alternating between activating one coil and two coils. This is used to increase resolution,
however the torque is less than full drive when only one coil is activated.

Of the two types it was chosen to use half drive in order to conserve energy as well as there is no need for a great
amount of torque for this project.

For controlling the speed of the motor, a timer will be used to create a configurable delay between each step of the
motor.

30021 - Digital Instrumentation Page 3 of 22

=
—
=

i

3 IMPLEMENTATION

In order to drive the motor an ULN2003A will be utilized to deliver the necessary amount of voltage and current,
hence the micro controller will not be able to drive it directly from the I/O ports.

2.2 LSM9DS1

The LSM9DS1 has a temperature sensor built in so this would be used for the monitoring the temperature of the
greenhouse.

At page 14 in the datasheet, it is given that the temperature sensor would have a reading of 0 at 25°C, however this
is a typical reading and the given Vdd is 2.2V which means that some calibration of the reading might be necessary.
Furthermore, at page 38 a description of the temperature register addresses to read are found. Here register address
015 is the OUT_TEMP_L, the lowest 8 bits and at address 0x16 is the OUT_TEMP _H, which is the highest 8 bits of
the combined 16 bit temperature reading.

In order to operate this sensor SPI communication is necessary to be implemented.

2.3 HC-SR04

For determining whether the window is open or closed the HC-SR04 will be used. This sensor functions by getting a
pulse, of minimum 10uS, on the trigger pin, where after the Echo pin will return a high pulse representing the distance
to the target. Here a timer on the micro controller should be utilized to control the length of the trigger pulse as well
as measure the length of the returning pulse of the Echo pin.

Further it is described that the formula for the range is, where ”Length” is the length of the Echo pulse and "VOS”
is velocity of sound:

_ Length - VOF N Length - 340"

R
ange 5 5

The length of the Echo pulse represents the distance from the sensor to the target and back, why it has to be divided
by 2. Furthermore, in order to represent the distance in centimeters the VOS can be converted to:
Length - 340™ N Length - 0.034%’;

2 2

Range =

With these calculations it should be possible to determine the state of the window.

2.4 Fan

For the acceleration of cooling the greenhouse a 12V fan will be used. This will as well be connected to the ULN2003A
and be controlled by an I/O port of the micro controller.

3 Implementation

This project was assembled by taking each major component and build a program for them. When they worked as
expected they would be combined one component at a time in order to ease the troubleshooting process. By doing
this it was possible to make fast progress and the assembly of the final program went as expected. However, building
the setup into the prototype green house revealed a number of challenges, for example connecting more jumperwires
with each other in order to install the LSM9DSI1 inside the green house resulted in unstable readings of temperature,
so this was kept with as short wire distance to the micro controller as possible.

30021 - Digital Instrumentation Page 4 of 22

=9
—]
=

i

3 IMPLEMENTATION

3.1 Flow chart

while(1)

Get temperature

if

temp > target
and

window == close

e

false

else if

temp <= target
and

window == open

true: Close window

false

if
temp > target

wait
true—)[10 sec >—>[Start fan]

false

Stop fan

Figure 1: System flowchart

In figurel a flow chart of the system is shown. First the initialization where UART (For the terminal), SPI, GPIOs,
Timer and the ADC are initialized. Moreover, most of the variables used in the program are created here. Though three
global variables are needed, these are for the timer and to make sure that the fan will activate when the temperature
is above the target temperature.

In the while loop the position of the window is determined by shooting a distance to it with the HC-SR04. After this,
the temperature is read. The next two if statements compare the current state of the window and the last temperature
reading and the open or close the window compared is needed.

Lastly, an if statement determines when the fan should start. In the project it is programmed to start if the temperature

has been above the target temperature for more than 10 seconds and keep cooling until the temperature has dropped
below the target temperature.

30021 - Digital Instrumentation Page 5 of 22

=
—
=

i

3 IMPLEMENTATION

3.2 System overview

Pin selection

PIN | I/O | Component Type
PAO0O5 | Out | Step motor Coil 1
PA06 | Out | Step motor Coil 2
PAO0O7 | Out | Step motor Coil 3
PBO0O1 | Out | Step motor Coil 4
PB08 | Out | LSM9DS1 CS
PC10 | AF | LSM9DS1 CLK
PC11 | AF | LSM9DS1 MOSI
PC12 | AF | LSM9DS1 MISO
3.3V - LSM9DS1 Vdd
PC06 | In HC-SR04 Echo
PCO08 | Out HC-SR04 Trigger
5V - HC-SR04 Vee
PB11 | Out Fan Fan control

In the table above an overview of the pins used for this project is shown. Be advised that the LSM9DS1s supply
voltage is ranged between 1.9V-3.6V whereas the HC-SR04s supply voltage is rated at 5V. Usually sensors will work
with a supply voltage of 3.3V but in the latter case 5V is required for it to function.

Derwer Steppec
ULN2003A motor
Nucleo
STM12
FAN
Temp Dist
LSMIDST| |HC-9R04

Figure 2: System overview

In figure 2 a simple schematic of the system is seen. The LSM9DS1 will communicate with the micro controller using
SPI, and the HC-SR04 measurements is converted by timing the length of the high pulse. For motor and fan control
an ULN2003A driver is used, which is supplied by an external power source delivering 12V as needed for the motor
and fan to function as intended.

3.3 Window handle

Creating the function for controlling the motor was one of the trickiest to create. First, a function was made that
needed inputs regarding which direction the motor should drive, the distance it should match, and the velocity
the motor should run at. However, this function could not take into account what happened if the motor opened the
window too much, and could not adjust the speed in order to slow down when getting close to the determined distance.

30021 - Digital Instrumentation Page 6 of 22

=
—
=

<=
3 IMPLEMENTATION >
. = dist - ted " *
while(etest 1=0) lrue»[e Isd?:t(;?]c:lan e H etest=e*5 H u=150/(kp*e) H
false
A
tru dir=0
fallse
?rue
else if
dir ==
set_speed(abs(u))
if
get_temp > true—»| start_fan = start_fan
target_temp
false
false
[start_fan =0] { start_fan =1]
A 4
Figure 3: Window handle flowchart
30021 - Digital Instrumentation Page 7 of 22

=
—
=

i

4 TEST

In figure 3 a flow chart of the function is seen. The while loop will keep running until the variable etest is zero. Etest
was implemented since the original error variable (e) is a float variable and there was issues with it never reaching
zero and keeping adjusting the position of the window back and forward. However, using the etest variable that is the
e variable multiplied with 5, a reasonable result was seen. So by adding;:

150

U@lOCity = m

The velocity would decrease as the error distance decreases as well. Next the dir = 1 represents the direction for the
motor to drive. The first if statement test whether u is positive or negative - if negative the motor will change dir =
0 and go reverse. The variable kp was implemented in order to adjust the gain of the controller, though this was not
needed since the function worked as intended, so kp = 1. The if and else if statements tests what value dir has and
decide the direction of the motor. In these two statements, the velocity is regulated by the set_speed function in order
to decrease the revolution of the motor as the error distance decrease.

By doing this, the system is also able to correct the window position if the motor opens the window to much, or if a
wind gust opens the window more than the desired position.

When the window is positioned as commanded, the while loop will break. Before returning from the function, there
is an if statement with another nested if statement. This determines whether the temperature is above the target
temperature - if yes, another statement checks if the start_fan = 1. If this is true start_fan will keep the same value,
and if not true the timer for flag_fan = 0 in order to reset the 10 second timer and start_fan = 1.

If the first if statement is not true, start_fan = 0 since the temperature is not at a level where fan cooling is necessary.
These if statements were needed since the flag_fan would otherwise reset each time the function was called. So if the
window was open and had to re-adjust the position while the fan was already running the timer would reset and the
fan would stop and continue after a new 10 second delay.

3.4 Thermometer

As described in section 2.2 the temperature sensor on the LSM9DS1 would read out 0 at 25°C with a Vdd of 2.2V.
When calibrating the thermometer for being supplied with 3.3V from the micro controller it was discovered that the
offset should be 18 and not 25 as expected. However, after implementing this and figuring out how to interpret the
readings, stable reading was achieved.

3.5 Distance sensor

For the HC-SR04, a function was created that would set the trigger pin high for 10us and afterwards a while loop
would hold the function until the Echo pin is not low. When this state changes the time of the high pulse is recorded
and the distance is converted with the formula from section 2.3.

4 Test

When testing the prototype some adjustments had to be made, for example the position of the HC-SR04 had to
be positioned some distance away from the window when it was closed due to the sensors minimum range of 2 cm,
however after this was corrected some minor adjustments of the distance for the open and closed states were an easy fix.

Further finding the span of velocity of where the step motor would run smooth took some testing, but by trial and
error it was discovered that the set_speed functions maximum velocity was 10 and minimum was approximately 150.
Staying between these two values is controlled in the handle_window by setting a minimum and maximum value for
the motor with two if statements.

The controlling of when the fan had to turn on and off also gave rise to minor issues. At start the fan timer would
simply reset every time the temperature was above the target temperature, however sometimes the window will
re-adjust after opening the window, resulting in the function to be called again hence the timer would reset again.

30021 - Digital Instrumentation Page 8 of 22

=
—
=

i

6 CONCLUSION

This was overcome by having a global control variable that had to be true before the counter flag for the fan would reset.

5 System demonstration

We have made a short video demonstration of the system, which can be viewed on Youtube through this link:
https://youtu.be/YMrgh2bXoww

6 Conclusion

When testing the system it worked as expected. Though it was necessary to add a factor to the handle_window
function in order to avoid the function not opening the window to the correct distance and afterwards have to run the
function multiple times where the steps from the motor finally hit the correct distance. This is possible due to the
HC-SR04s inaccuracy that sometimes varies when measuring the distance. By adding 0.5 to the defined window_open
variable this issue was overcome and the function worked as it should.

For the timer there was an issue with getting the correct sequence, so when for example 10us was needed the timer
would only count to 5us. The wrong setting in the timer initialization was not found, but the problem was overcome
by multiplying the timed period, this is seen the get_distance function.

For the LSM9DS1 an attempt to install the sensor inside the prototype was made. However, by adding multiple
jumpercables together, in order to having it to reach the green house, the temperature readings were rather jumpy
and the issue stopped when shortening the wires as much as possible. It would likely be possible to fix the problem
by using longer cables to minimize the number of connecting cables, however this is not tested, since the overall idea
of the system was still possible to show with the sensor outside the prototype.

Furthermore, the project has been designed to fully open the window when above a certain temperature and fully close
when below this temperature, so if the temperature in the green house is fluctuating around this target temperature
the system will open and close the window until the temperature changes to a higher or lower value. However, this
was not considered prior to the demonstration to the advisor and there has not been enough time to re-think the
functions of the program.

Finally, the whole program consists of a lot of controlling if statements. This is because by using them for controlling
the different parameters gave a rather simple but effective way to check and control the different variables.

All in all, this project has been a great challenge that has resulted in a great understanding in how the STM32
micro controller works and how to implement and work with multiple sensors continuously during a program. As
described in the problem definition the project requirements have been met, except the goal number 2, which was
humidity monitoring. This was not implemented since it was decided to use the issued LSM9DS1 for temperature
measurements instead of another sensor, like the DHT-11 or DHT-22. But the main concept of monitoring and reacting
to the changes of the climate inside a green house has been successful.

30021 - Digital Instrumentation Page 9 of 22

https://youtu.be/YMrg52bXoww

=
—
=

i

A APPENDIX

A Appendix

A.1 main.c code

#include "stm32f30x_conf.h"

#include "30021_io.h" // Input/output library for this course
#include "lcd.h" // LCD driver
#include <string.h> // memset ()
#include <stdlib.h>

#define close 0O

#define open 1

#define unknown_L 2

#define unknown_H 3

#define window_open 5.0

#define window_close 3.0

#define target_temp 24

void GPIO_init();

void timer_Init();

void TIM2_IRQHandler(void);

void delay_us(int delayUs);

void delay_ms(int delayMs);

void delay_S(int delayS);

void half_drive(int step);

void full_drive(int step);

void set_speed(int speed);

float get_distance();

void writeRegister(int address, int data);
void init_SPI();

int readRegister(int address);

void handle_window(float distance);
int get_temp();

static int flag = O;
static int flag_fan = O;
static int start_fan = O;

int main(void)
{
init_usb_uart(9600); // Initialize USB serial at 9600 baud
GPIO_init();
timer_Init();
init_SPI();

float distance = 0;
int distInt = O;
float distBuf = O;
int distFrac = 0;

int temp = O;

int window_state = 0;
char test[512];

30021 - Digital Instrumentation Page 10 of 22

A APPENDIX

=
—
=

i

memset (test,0x00,512) ;
uint8_t fbuffer[513]; // Creates a buffer array
memset (fbuffer,0x00,512) ; // Sets each element of the buffer to 0x00

writeRegister (0x1F,0b00111000); //setup XL CTRL REG 5
writeRegister (0x20,0b11000000); //setup XL CTRL REG 6
writeRegister(0x21,0b10100110); //setup XL CTRL REG 7
writeRegister(0x10,0b11000000); //setup G CTRL REG1

temp = get_temp();
delay_S(5); //hold 1 second to get stable temperature readings

while(1)
{

distance = get_distance(); // Measure distance to the window

// Used to convert the float distance to two integers representing

// the integer and the decimal of the distance for printing to terminal
distInt = distance;

distBuf = distance - distlInt;

distFrac = (distBuf * 100);

temp = get_temp(); //Get the temperature

printf("Distance to target: %d.%02d cm\n", distInt, distFrac);
printf ("Temp: %d\n",temp);

// Used to determine the position of the window
if (distance <= 3.4 &% temp <= target_temp)

{
window_state = close;
}
else if ((distance >= 6) && (temp > target_temp))
{
window_state = unknown_H;
}
else if ((distance >= 5) && (temp > target_temp))
{
window_state = open;
}
else
{

window_state = unknown_L;

30021 - Digital Instrumentation

Page 11 of 22

=
—
=

i

A APPENDIX

//Prints window state to terminal
switch (window_state)
{
case close:
printf ("Window closed\n");
break;

case open:
printf ("Window open\n");
break;

default:

break;

// Determines whether the window should be opened of closed
if (temp > target_temp &% (window_state == close || window_state == unknown_L ||
window_state == unknown_H))
{
handle_window(window_open + 0.5);

}

else if (temp <= target_temp && (window_state == open || window_state == unknown_L ||
window_state == unknown_H))
{
handle_window(window_close);

3

// Start fan after 10 seconds if the window is still open
// and temperature is above target temp

if (flag_fan > 5000000 && start_fan == 1)

{
GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_SET);
}
else
{
GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_RESET);
}

30021 - Digital Instrumentation Page 12 of 22

=
—
=

i

A APPENDIX

delay_S(10);

3
by

int get_temp()

{
int16_t offset = 14;
int temp_L = 0;
int16_t temp_H = 0;
uintl6_t temp_raw = O;

temp_H = readRegister(0x16);

temp_L = readRegister(0x15);

temp_raw = ((((int16_t)temp_H << 8) | temp_L) >> 8);
return(offset + temp_raw/16);

3

void handle_window(float distance) // 1 = open window, O = close window

{

float kp = 1;
float e = 200;
int etest = 200;
int u = 0;

int dir = O;

while (etest != 0)
{

e = get_distance() - distance; //Compare the current distance to the wanted distance
etest = e *x 5; //Used for the while loop to break when target distance is reached

u = 150/(kp * e); //Used to regulate the speed according to the distance to target

dir = 1; // Direction if the variable u < O the motor will close the window and u > O the
// motor will open the window

30021 - Digital Instrumentation Page 13 of 22

A APPENDIX

=
—
=

i

if (u < 0) // if the u if negative the motor will reverse

{
dir = 0;
}

//Sets the speed between 10 and 150.

if (abs(u) > 150)

{
u = 150;
}
else if (abs(u) < 10)
{
u = 10;
}

if (dir == 1)

{
for(int i = 0; i < 8; i++)
{
half_drive(i);
set_speed(abs(u));
}
}
else if (dir == 0)
{
for(int i = 7; i >= 0; i--)
{
half_drive(i);
set_speed(abs(u));
}
}

if (get_temp() > target_temp)
{

10 is the fastest speed

30021 - Digital Instrumentation

Page 14 of 22

A APPENDIX

=
—
=

i

if(start_fan == 1)

{
start_fan = start_fan;
}
else
{
flag_fan = 0;
start_fan = 1;
}
}
else
{
start_fan = 0O;
}

void init_SPI()
{

RCC_APB1PeriphClockCmd (RCC_APB1Periph_SPI3, ENABLE);

RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOC,ENABLE); // Enable clock for GPIO Port C

RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOB,ENABLE); // Enable clock for GPIO Port B

GPIO_InitTypeDef GPIO_InitStructAll;

//SPI CLK

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPI0O_Mode = GPIO_Mode_AF; // Set as Alternating Function
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_NOPULL; // Set as No Pull
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_10; // Set so the configuration is on PinC10
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
GPIO_PinAFConfig(GPIOC, GPIO_PinSourcel0O,GPIO_AF_6);

//SPI MOSI

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_AF; // Set as Alternating Function
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_NOPULL; // Set as No Pull
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_11; // Set so the configuration is on PinC11
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
GPIO_PinAFConfig(GPIOC, GPIO_PinSourcell,GPIO_AF_6);

//SPI CS

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_0UT; // Set as Output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as Pull Down

30021 - Digital Instrumentation

Page 15 of 22

=
—
=

i

A APPENDIX

GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_8; // Set so the configuration is on PinB8
GPIO_Init(GPIOB, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen

//SPI MISO

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_AF; // Set as Alternating Function
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_NOPULL; // Set as No Pull
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_12; // Set so the configuration is on PinC12
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
GPI0O_PinAFConfig(GPIOC, GPIO_PinSourcel2,GPI0_AF_6);

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_IN; // Set as Input
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as Pull Down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_4; // Set so the configuration is on PinC4
GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen

SPI_InitTypeDef SPI_initstruct;
SPI_StructInit(&SPI_initstruct);
SPI_initstruct.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_initstruct.SPI_Mode = SPI_Mode_Master;
SPI_initstruct.SPI_CPOL SPI_CPOL_High;
SPI_initstruct.SPI_CPHA SPI_CPHA_2Edge;
SPI_initstruct.SPI_BaudRatePrescaler = 4;
SPI_initstruct.SPI_NSS = SPI_NSS_Soft;
SPI_initstruct.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_initstruct.SPI_CRCPolynomial = 7;
SPI_initstruct.SPI_DataSize = SPI_DataSize_8b;

SPI_Init(SPI3, &SPI_initstruct);
SPI_RxFIFOThresholdConfig(SPI3, SPI_RxFIFOThreshold_QF);

SPI_Cmd(SPI3, ENABLE);

void writeRegister(int address, int data)

{
GPIO_WriteBit(GPIOB, GPIO_Pin_8, Bit_RESET); // Set CS Low
SPI_SendData8(SPI3, address);
SPI_SendData8(SPI3, data);
GPIO_WriteBit (GPIOB, GPIO_Pin_8, Bit_SET); // Set CS High
}

int readRegister(int address)

uintl16_t toRead = 0;
address |= 0x80;

30021 - Digital Instrumentation Page 16 of 22

=
—
=

i

A APPENDIX

GPIO_WriteBit(GPIOB, GPIO_Pin_8, Bit_RESET); //Set CS Low

while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET);

SPI_SendData8(SPI3, address);
SPI_SendData8(SPI3, 0x00);

while(SPI_IQS_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) !'= SET);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET);
toRead = SPI_ReceiveData8(SPI3);
toRead = SPI_ReceiveData8(SPI3);

GPIO_WriteBit(GPIOB, GPIO_Pin_8, Bit_SET); // Set CS High

return toRead;

}

void set_speed(int speed) // Regulate the speed by adjusting the delay between steps
{
delay_ms(speed) ;
X
void full_drive(int step)
{

switch(step)

case O:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
break;

case 1:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 2:
GPIO_WriteBit (GPIOA, GPIO_Pin_5, Bit_SET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_SET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 3:

30021 - Digital Instrumentation Page 17 of 22

=
—
=

i

A APPENDIX

GPIO_WriteBit (GPIOA, GPIO_Pin_5, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
break;

default:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

¥
void half_drive(int step)
{
switch(step)
{
case O:

GPIO_WriteBit (GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
break;
case 1:

GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
break;

case 2:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 3:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 4:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_SET);

30021 - Digital Instrumentation Page 18 of 22

=
—
=

i

A APPENDIX

GPIO_WriteBit(GPIDOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case b5:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 6:
GPIO_WriteBit (GPIOA, GPIO_Pin_5, Bit_SET);
GPIO_WriteBit (GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

case 7:
GPIO_WriteBit(GPIOA, GPIO_Pin_5, Bit_SET);
GPIO_WriteBit(GPIOA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIDA, GPIO_Pin_7, Bit_RESET);
GPI0O_WriteBit (GPIOB, GPIO_Pin_1, Bit_SET);
break;

default:
GPIO_WriteBit(GPIDA, GPIO_Pin_5, Bit_RESET);
GPIO_WriteBit(GPIODA, GPIO_Pin_6, Bit_RESET);
GPIO_WriteBit(GPIOA, GPIO_Pin_7, Bit_RESET);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET);
break;

}
}
float get_distance()
{
float duration = 0;
float distance = 0;

duration = 0;

GPIOC->BSRR = GPIO_Pin_8;

flag = 0;

while(flag < 5);

GPIOC->BRR = GPIO_Pin_8;

while (GPIO_ReadInputDataBit (GPIOC,GPI0_Pin_6) == 0);
flag = 0;

while (GPIO_ReadInputDataBit (GPIOC,GPI0O_Pin_6) == 1);

if (flag > 18500) // if no object detected discard reading
{

30021 - Digital Instrumentation Page 19 of 22

=
—
=

i

A APPENDIX

flag = 0;
b
else
{
b
duration = flag*2;

distance = duration*0.034/2;

return distance;

}
void delay_us(int delayUs)
{
flag = 0;
while(flag < delayUs);
3
void delay_ms(int delayMs)
{
delayMs = delayMs * 100;
flag = 0;
while(flag < delayMs);
}
void delay_S(int delayS)
{
delayS = delayS * 100000;
flag = 0;
while(flag < delayS);
}
void TIM2_IRQHandler(void)
{
flagt++;
flag_fan++;
TIM_ClearITPendingBit (TIM2,TIM_IT _Update); // Clear interrupt bit
}

void timer_Init()
{
// Timer
RCC_APB1PeriphClockCmd (RCC_APB1Periph_TIM2,ENABLE) ;
RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOC,ENABLE); // Enable clock for GPIO Port C

30021 - Digital Instrumentation Page 20 of 22

A APPENDIX

=
—
=

i

3

TIM_TimeBaseInitTypeDef TIM_InitStructure;
TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_InitStructure.TIM_Period = 6138;
TIM_InitStructure.TIM_Prescaler = 100;
TIM_TimeBaseStructInit(&TIM_InitStructure);

TIM_TimeBaseInit (TIM2,&TIM_InitStructure);

// NVIC for timer

NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = O;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init (&NVIC_InitStructure);

TIM_ITConfig(TIM2,TIM_IT Update,ENABLE);

TIM_Cmd(TIM2,ENABLE) ;

RCC->APB1ENR |= RCC_APB1Periph_TIM2; // Enable clock line to timer 2

TIM2->CR1 = TIM_CR1_CKD_1; // Configure timer 2
TIM2->ARR = 63; // Set reload value
TIM2->PSC = 1; // Set prescale value

TIM2->DIER |= 0x0001; // Enable timer 2 interrupts
TIM2->CR1 = 1;

NVIC_SetPriority(TIM2_IRQn, 0); // Set interrupt priority interrupts
NVIC_EnableIRQ(TIM2_IRQn); // Enable interrupt

void GPIO_init()

{

RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOA,ENABLE); // Enable clock for

GPIO Port

A

RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOB,ENABLE); // Enable clock for GPIO Port B

RCC_AHBPeriphClockCmd (RCC_AHBPeriph_GPIOC,ENABLE); // Enable clock for GPIO Port C

GPIO_InitTypeDef GPIO_InitStructAll;

//Motor coil 1

30021 - Digital Instrumentation

Page 21 of 22

=
—
=

i

A APPENDIX

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPI0O_Mode = GPIO_Mode_0UT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_5; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
//Motor coil 2

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_0UT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_6; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
//Motor coil 3

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_OUT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_7; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
//Motor coil 4

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_OUT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_1; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen
//Fan control pin

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_0UT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_11; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen

//Trigger pin HC-SR04

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode = GPIO_Mode_OUT; // Set as output
GPIO_InitStructAll.GPIO_PuPd = GPIO_PuPd_DOWN; // Set as pull down
GPIO_InitStructAll.GPI0O_Pin = GPIO_Pin_8; // Set so the configuration is on pin 4
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen

//Echo pin HC-SR04

GPIO_StructInit(&GPIO_InitStructAll); // Initialize GPIO struct
GPIO_InitStructAll.GPIO_Mode GPIO_Mode_IN; // Set as output
GPIO_InitStructAll.GPIO_PuPd GPIO_PuPd_UP; // Set as pull down
GPIO_InitStructAll.GPIO_Pin = GPIO_Pin_6; // Set so the configuration is on pin 6
GPIO_InitStructAll.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOC, &GPIO_InitStructAll); // Setup of GPIO with the settings chosen

30021 - Digital Instrumentation Page 22 of 22

	Problem definition
	Design
	Step motor
	LSM9DS1
	HC-SR04
	Fan

	Implementation
	Flow chart
	System overview
	Window handle
	Thermometer
	Distance sensor

	Test
	System demonstration
	Conclusion
	Appendix
	main.c code

